3.8.69 \(\int \frac {\sqrt {a+b \sin (e+f x)}}{(c+d \sin (e+f x))^{3/2}} \, dx\) [769]

Optimal. Leaf size=409 \[ -\frac {2 (a-b) \sqrt {a+b} E\left (\sin ^{-1}\left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right )|\frac {(a+b) (c-d)}{(a-b) (c+d)}\right ) \sec (e+f x) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (1+\sin (e+f x))}{(a-b) (c+d \sin (e+f x))}} (c+d \sin (e+f x))}{(c-d) \sqrt {c+d} (b c-a d) f}+\frac {2 (a-b) \sqrt {a+b} F\left (\sin ^{-1}\left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right )|\frac {(a+b) (c-d)}{(a-b) (c+d)}\right ) \sec (e+f x) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (1+\sin (e+f x))}{(a-b) (c+d \sin (e+f x))}} (c+d \sin (e+f x))}{(c-d) \sqrt {c+d} (b c-a d) f} \]

[Out]

-2*(a-b)*EllipticE((c+d)^(1/2)*(a+b*sin(f*x+e))^(1/2)/(a+b)^(1/2)/(c+d*sin(f*x+e))^(1/2),((a+b)*(c-d)/(a-b)/(c
+d))^(1/2))*sec(f*x+e)*(c+d*sin(f*x+e))*(a+b)^(1/2)*((-a*d+b*c)*(1-sin(f*x+e))/(a+b)/(c+d*sin(f*x+e)))^(1/2)*(
-(-a*d+b*c)*(1+sin(f*x+e))/(a-b)/(c+d*sin(f*x+e)))^(1/2)/(c-d)/(-a*d+b*c)/f/(c+d)^(1/2)+2*(a-b)*EllipticF((c+d
)^(1/2)*(a+b*sin(f*x+e))^(1/2)/(a+b)^(1/2)/(c+d*sin(f*x+e))^(1/2),((a+b)*(c-d)/(a-b)/(c+d))^(1/2))*sec(f*x+e)*
(c+d*sin(f*x+e))*(a+b)^(1/2)*((-a*d+b*c)*(1-sin(f*x+e))/(a+b)/(c+d*sin(f*x+e)))^(1/2)*(-(-a*d+b*c)*(1+sin(f*x+
e))/(a-b)/(c+d*sin(f*x+e)))^(1/2)/(c-d)/(-a*d+b*c)/f/(c+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 409, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2874, 2897, 3075} \begin {gather*} \frac {2 (a-b) \sqrt {a+b} \sec (e+f x) (c+d \sin (e+f x)) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (\sin (e+f x)+1)}{(a-b) (c+d \sin (e+f x))}} F\left (\text {ArcSin}\left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right )|\frac {(a+b) (c-d)}{(a-b) (c+d)}\right )}{f (c-d) \sqrt {c+d} (b c-a d)}-\frac {2 (a-b) \sqrt {a+b} \sec (e+f x) (c+d \sin (e+f x)) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (\sin (e+f x)+1)}{(a-b) (c+d \sin (e+f x))}} E\left (\text {ArcSin}\left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right )|\frac {(a+b) (c-d)}{(a-b) (c+d)}\right )}{f (c-d) \sqrt {c+d} (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x])^(3/2),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*EllipticE[ArcSin[(Sqrt[c + d]*Sqrt[a + b*Sin[e + f*x]])/(Sqrt[a + b]*Sqrt[c + d*Sin[e
+ f*x]])], ((a + b)*(c - d))/((a - b)*(c + d))]*Sec[e + f*x]*Sqrt[((b*c - a*d)*(1 - Sin[e + f*x]))/((a + b)*(c
 + d*Sin[e + f*x]))]*Sqrt[-(((b*c - a*d)*(1 + Sin[e + f*x]))/((a - b)*(c + d*Sin[e + f*x])))]*(c + d*Sin[e + f
*x]))/((c - d)*Sqrt[c + d]*(b*c - a*d)*f) + (2*(a - b)*Sqrt[a + b]*EllipticF[ArcSin[(Sqrt[c + d]*Sqrt[a + b*Si
n[e + f*x]])/(Sqrt[a + b]*Sqrt[c + d*Sin[e + f*x]])], ((a + b)*(c - d))/((a - b)*(c + d))]*Sec[e + f*x]*Sqrt[(
(b*c - a*d)*(1 - Sin[e + f*x]))/((a + b)*(c + d*Sin[e + f*x]))]*Sqrt[-(((b*c - a*d)*(1 + Sin[e + f*x]))/((a -
b)*(c + d*Sin[e + f*x])))]*(c + d*Sin[e + f*x]))/((c - d)*Sqrt[c + d]*(b*c - a*d)*f)

Rule 2874

Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Dis
t[(c - d)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Dist[(b*c - a*d)/(a - b
), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d,
e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2897

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Si
mp[2*((c + d*Sin[e + f*x])/(f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]*Cos[e + f*x]))*Sqrt[(b*c - a*d)*((1 - Sin[e +
 f*x])/((a + b)*(c + d*Sin[e + f*x])))]*Sqrt[(-(b*c - a*d))*((1 + Sin[e + f*x])/((a - b)*(c + d*Sin[e + f*x]))
)]*EllipticF[ArcSin[Rt[(c + d)/(a + b), 2]*(Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]])], (a + b)*((c -
 d)/((a - b)*(c + d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c
^2 - d^2, 0] && PosQ[(c + d)/(a + b)]

Rule 3075

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*((a + b*Sin[e + f*x])/(f*(b*c - a*d)^2*Rt[(a + b)/(c +
d), 2]*Cos[e + f*x]))*Sqrt[(b*c - a*d)*((1 + Sin[e + f*x])/((c - d)*(a + b*Sin[e + f*x])))]*Sqrt[(-(b*c - a*d)
)*((1 - Sin[e + f*x])/((c + d)*(a + b*Sin[e + f*x])))]*EllipticE[ArcSin[Rt[(a + b)/(c + d), 2]*(Sqrt[c + d*Sin
[e + f*x]]/Sqrt[a + b*Sin[e + f*x]])], (a - b)*((c + d)/((a + b)*(c - d)))], x] /; FreeQ[{a, b, c, d, e, f, A,
 B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && PosQ[(a + b)/(c + d)]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b \sin (e+f x)}}{(c+d \sin (e+f x))^{3/2}} \, dx &=\frac {(a-b) \int \frac {1}{\sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \, dx}{c-d}+\frac {(b c-a d) \int \frac {1+\sin (e+f x)}{\sqrt {a+b \sin (e+f x)} (c+d \sin (e+f x))^{3/2}} \, dx}{c-d}\\ &=-\frac {2 (a-b) \sqrt {a+b} E\left (\sin ^{-1}\left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right )|\frac {(a+b) (c-d)}{(a-b) (c+d)}\right ) \sec (e+f x) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (1+\sin (e+f x))}{(a-b) (c+d \sin (e+f x))}} (c+d \sin (e+f x))}{(c-d) \sqrt {c+d} (b c-a d) f}+\frac {2 (a-b) \sqrt {a+b} F\left (\sin ^{-1}\left (\frac {\sqrt {c+d} \sqrt {a+b \sin (e+f x)}}{\sqrt {a+b} \sqrt {c+d \sin (e+f x)}}\right )|\frac {(a+b) (c-d)}{(a-b) (c+d)}\right ) \sec (e+f x) \sqrt {\frac {(b c-a d) (1-\sin (e+f x))}{(a+b) (c+d \sin (e+f x))}} \sqrt {-\frac {(b c-a d) (1+\sin (e+f x))}{(a-b) (c+d \sin (e+f x))}} (c+d \sin (e+f x))}{(c-d) \sqrt {c+d} (b c-a d) f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 5.48, size = 263, normalized size = 0.64 \begin {gather*} \frac {2 \left (-((b c-a d) \cos (e+f x))-\frac {\sqrt {2} \sqrt {\frac {a-b}{a+b}} (a+b) (c+d) \cos \left (\frac {1}{4} (2 e-\pi +2 f x)\right ) E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {a-b}{a+b}} \cos \left (\frac {1}{4} (2 e+\pi +2 f x)\right )}{\sqrt {\frac {a+b \sin (e+f x)}{a+b}}}\right )|\frac {2 (-b c+a d)}{(a-b) (c+d)}\right ) \sqrt {\frac {a+b \sin (e+f x)}{a+b}} \sqrt {\frac {(a+b) (c+d \sin (e+f x))}{(c+d) (a+b \sin (e+f x))}}}{\sqrt {\frac {(a+b) (1+\sin (e+f x))}{a+b \sin (e+f x)}}}\right )}{(c-d) (c+d) f \sqrt {a+b \sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x])^(3/2),x]

[Out]

(2*(-((b*c - a*d)*Cos[e + f*x]) - (Sqrt[2]*Sqrt[(a - b)/(a + b)]*(a + b)*(c + d)*Cos[(2*e - Pi + 2*f*x)/4]*Ell
ipticE[ArcSin[(Sqrt[(a - b)/(a + b)]*Cos[(2*e + Pi + 2*f*x)/4])/Sqrt[(a + b*Sin[e + f*x])/(a + b)]], (2*(-(b*c
) + a*d))/((a - b)*(c + d))]*Sqrt[(a + b*Sin[e + f*x])/(a + b)]*Sqrt[((a + b)*(c + d*Sin[e + f*x]))/((c + d)*(
a + b*Sin[e + f*x]))])/Sqrt[((a + b)*(1 + Sin[e + f*x]))/(a + b*Sin[e + f*x])]))/((c - d)*(c + d)*f*Sqrt[a + b
*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(46827\) vs. \(2(379)=758\).
time = 11.09, size = 46828, normalized size = 114.49

method result size
default \(\text {Expression too large to display}\) \(46828\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(f*x + e) + a)/(d*sin(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)/(d^2*cos(f*x + e)^2 - 2*c*d*sin(f*x + e) - c^2 - d
^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b \sin {\left (e + f x \right )}}}{\left (c + d \sin {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e))**(3/2),x)

[Out]

Integral(sqrt(a + b*sin(e + f*x))/(c + d*sin(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(f*x + e) + a)/(d*sin(f*x + e) + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {a+b\,\sin \left (e+f\,x\right )}}{{\left (c+d\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(e + f*x))^(1/2)/(c + d*sin(e + f*x))^(3/2),x)

[Out]

int((a + b*sin(e + f*x))^(1/2)/(c + d*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________